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ABSTRACT: Entropies of solids are obtained experimentally
as integrals of measured heat capacities over the temperature
range from zero to ambient. Correspondingly, the Debye
phonon distribution equation for solids provides a theoretical
connection between these two chemical thermodynamic
measures. We examine how the widely applicable Debye
equation illuminates the relation between the corresponding
experimental measures using more than 250 ionic solids.
Estimation of heat capacities for simple ionic solids by the
Dulong−Petit heat capacity limit, by the Neumann−Kopp
elemental sum, and by the ion sum method is examined in
relation to the Debye equation. We note that, and explain why, the ambient temperature heat capacities and entropies of ionic
solids are found to be approximately equal, and how deviations from equality may be related to the Debye temperature, ΘD,
which characterizes the Debye equation. It is also demonstrated that Debye temperatures may be readily estimated from the
experimental ratio of ambient heat capacity to entropy, Cp/Sp, rather than requiring resort to elaborate theoretical or
experimental procedures for their determination. Correspondingly, ambient mineral entropies and heat capacities are linearly
correlated and may thus be readily estimated from one another.

■ INTRODUCTION

Over the past decade or so, colleagues and I have developed
predictive methods for the common parameters of the chemical
thermodynamics of ionic solids, namely, heat capacity,1

entropy,2 lattice energy,3 formation enthalpy and Gibbs
energy,4 and even the thermoelastic property of compressi-
bility.5 These predictive methods have been based on either the
development of additive single-ion values for a property or
empirical linear correlation between the property and formula
unit volume (values of which are readily available from crystal
structure determination, experimental density, or even
estimated) in the process that we have termed Volume-Based
Thermodynamics, VBT.6

In particular, we have observed that the ambient values of
isobaric heat capacity, Cp,m,

1a and of entropy, Sp,m,
2a of ionic

solids are each strongly linearly correlated with formula volume,
Vm. This implies that heat capacity and entropy are
correspondingly linearly correlated with each other. The
function of the present communication is to investigate this
latter correlation from a fundamental viewpoint, noting that
these properties are related not only experimentally but also
through the Debye phonon distribution equation. In this way,
we intend to develop a deeper understanding of the underlying
source of the correlation. Compared with the standard
approaches to the Debye equation, where individual materials
are considered, in this new approach we examine the relation
across an extensive range of ionic solids, from simple binary
materials to complex minerals.

We have only be able to locate one other consideration of the
relation between ambient heat capacity and entropy. In that
early analysis, Landiya7 reported an empirical relation based on
the assumption of approximate linearity of heat capacity with
inverse absolute temperature

= −− −C S/J K mol 20.5 (15.1/ )v,at
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where the subscript “at” refers to values per mole of atoms. A
test of current values of heat capacity and entropy shows this
not to be a usefully reliable relation.

■ THERMODYNAMIC RELATIONS
Heat capacity is usually considered under conditions of either
constant volume, Cv, or of constant pressure, Cp
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with U = energy and H = enthalpy.
Entropy is an integrated function of heat capacity
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The Debye equation8 estimates the phonon contribution to
the isochoric (constant volume) heat capacity, Cv(T), of a solid
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as a function of temperature, for a simple phonon distribution,
based on a parameter termed the Debye temperature, ΘD. For a
mole of atoms, the equation for heat capacity has the form:
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where R is the gas constant and τ ≡ T/ΘD is a normalized (or
reduced) temperature. ΘD corresponds to the temperature at
which the most energetic of the phonon modes is excited. Since
the integral has no analytic solution, it has to be evaluated
numerically.9

This equation correctly describes the low-temperature
dependence of the heat capacity as proportional to T3 and
also asymptotes at high temperatures to the Dulong−Petit
value of about 3R ≅ 25 J K−1 (mol of atoms)−1, but takes no
account of possible phase transitions, magnetic contributions,
metallic electrical conductivity through electron motion,
anisotropy, dispersion, or varied optic vibrational modes.10 In
considering the following analysis, these limitations should be
noted.
The Debye equation may also be integrated8 to yield the

energy, U, and entropy, S,
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These equations yield the Debye energy, heat capacity, and
entropy for solids under conditions of constant volume. Figure
1 is a plot of both Debye heat capacity and entropy as a
function of the normalized temperature.
The following are important points to note with regard to

the curves in Figure 1. Initially, heat capacity rises more rapidly
with temperature than does entropy, but is overtaken at τ ≡ T/
ΘD ≅ 0.58(6), when each has the value 21.6(5) J K−1 (mol of
atoms)−1. Thereafter, entropy increases smoothly while heat
capacity asymptotes toward the Dulong−Petit value of

approximately 25 J K−1 (mol of atoms)−1. For an ambient
temperature of 300 K, the crossover point corresponds to a
Debye temperature of about 510 K. While the Debye equation
relies on one Debye temperature only, the best fit of heat
capacity to the equation for real materials requires Debye
temperatures which vary somewhat with temperature.8 For the
current approximate considerations, this complication will be
ignored.
Figure 2 shows, from the Debye equation, that heat capacities

and entropies lie within 10% of one another in the normalized

temperature range 0.50 < τ < 0.68, provided that there are no
intruding low-temperature phase changes.
The Debye phonon distribution is, as noted above, only an

approximation to the real properties of materials, omitting
many features of actual materials, so that more sophisticated
(and complex) spectral distributions than implied by the simple
Debye distribution have been devised to better represent many
materials.10,11 However, there is little need, for present
purposes, to delve into these details since “the thermodynamic
functions are integrals over the frequency distribution [so that]
they are insensitive to details of the spectrum.”10

■ EXPERIMENTAL OBSERVATIONS
Most values of heat capacity and entropy for solids are reported
under conditions of fixed pressure rather than fixed volume
since ambient fixed pressure measurements are much more
straightforward. The positive heat-capacity difference

α
β
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where α = coefficient of thermal expansion, and βT = isothermal
compressibility, may be regarded as negligible for ionic solids
for present purposes.
In the current paper, we examine the relation between

ambient heat capacity and ambient entropy for many ionic
solids and demonstrate that there is much to be learned by
consideration of this relation with reference to the Debye
equation, well beyond the obvious integral connection between
the two properties.

■ IONIC SOLIDS
The simplest method for estimation of heat capacities under
ambient conditions for nonelementary solids is as a sum of the

Figure 1. Heat capacity, Cv (broken blue curve), and entropy, Sv (solid
red curve), per mole of atoms, according to Debye eqs 4 and 5,
respectively,9 plotted against the normalized temperature, τ ≡ T/ΘD.
The equivalence (crossover) point lies at T/ΘD ≅ 0.58(6), when each
quantity plotted has the value 21.6(5) J K−1 (mol of atoms)−1.

Figure 2. Ratio of Debye heat capacity and entropy, Cv/Sv, plotted
against normalized temperature, τ ≡ T/ΘD. The range where the
values lie within 10% of one another, 0.50 < τ < 0.68, is delimited by
the horizontal lines.
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Dulong−Petit value of ∼25 J K−1 per mole of constituent
atoms. The commonly applied Neumann−Kopp method12 of
summing the heat capacities of the constituent elements
provides improved accuracy. In Figure 3, which plots the

ambient heat capacities for 161 simple ionic solids against their
entropies (data in the Supporting Information, Table S1), we
see that the values for binary ionic solids do, indeed, asymptote
toward (2 × 25) J K−1 mol−1 as their entropy increases, while
those for ternary ionic solids asymptote more slowly to (3 ×
25) J K−1 mol−1. Those materials in a given class having smaller
ions (e. g., MgO) have smaller entropies, while entropies
increase as lattice vibrations become freer with larger ions (such
as CsI). For these simple solids, ambient heat capacities and
entropies do not correlate except as limiting low entropy values
for the most rigid materials.
As the complexity of the materials increases, the reliability of

the Neumann−Kopp prediction decreases. In this situation,
additive single-ion values should preferably be used to predict
the heat capacities.1b

Lambert and Leff13 have recently published a correlation of
enthalpy, ΔH°(298), versus standard entropy, S°(298), for a
wide range of materials, based on the definition

∫Δ ° =H C T T( ) d
T

0
p

0

(7)

According to this correlation, S° ≅ 0.066 ΔH° K−1, with
excellent linearity. As these authors have demonstrated, the
assumption of an essentially linear Cp versus T relation for
many materials over the temperature range from low to
ambient temperature yields just this slope of 0.066 K−1 when
the enthalpy integral is correlated with ambient entropy,

yielding a mean Debye temperature of about 150 K. Moreover,
the Debye relation 4 and 5 (with this Debye temperature of
150 K) remarkably yields a ratio of S/U = 0.0067 K−1.
However, this correlation has little fundamental significance
since it simply represents the same data set (of Cp values)
plotted against each other with different weightings (i.e., eq 7
versus eq 2). The alternative weighting does, of course, show
up some minor anomalies.13 It is unfortunate that this relation
has been characterized elsewhere as an “entropy-enthalpy
compensation effect”,14 which has itself been described as “two
variables [which] are very largely the same variable looked at in
two different ways”.15

We here further develop the heat capacity versus entropy
correlation by plotting the ambient heat capacities against their
ambient entropies for 109 silicate and aluminate minerals,
together with oxides, hydroxides, and carbonates, from the
recent internally consistent database of Holland and Powell,16

(see the Supporting Information, Table S2, for data).
The plot of Figure 4 not only confirms the expected

correlation between ambient heat capacity and entropy for the

more complex ionic solids, but also yields the intriguing result
that the ambient temperature heat capacities and entropies of
the minerals and other materials included are almost equal to
one another (slope of 1.089), even though the heat capacity is a
room-temperature value while the entropy is a heat capacity
value integrated to room temperature. In terms of Figure 2,
with heat capacities averaging about 9% larger than the
corresponding entropies, this implies that the Debye temper-

Figure 3. Heat capacity, Cp° (298)/J K−1 mol−1 plotted versus
entropy, S298°/J K−1 mol−1, for 161 simple ionic solids. The red
squares represent binary ionic solids, ranging from MgO at left to CsI
at right; the green triangles represent ternary ionic solids, ranging from
Li2O at left to BaI2 at right; the purple circles represent ionic
carbonates, grouped into the alkaline-earth carbonates, starting with
MgCO3 at left, to the alkali metal carbonates with Cs2CO3 on the
right; while the blue stars represent sulfates, similarly grouped from
MgSO4 at left to Cs2SO4 on the right. The remaining open blue
diamonds represent nitrates, phosphates, and a range of other ionic
solids which do not demonstrate such clearly systematic behavior. The
following outliers have been omitted from the graph: CuCl2: Cp°(298)
= 71.9, S°(298) = 108.1 (magnetic transition); Li2S: Cp°(298) = 38.6,
S°(298) = 60.7. The broken diagonal line represents equality of heat
capacity and entropy.

Figure 4. Heat capacity, Cp° (298)/J K−1 mol−1 plotted versus
entropy, S298°/J K

−1 mol−1, for 109 silicate and aluminate minerals,
together with oxides, hydroxides and carbonates, from the most recent
internally consistent database of Holland and Powell.16 Ortho- and
ring-minerals: filled blue diamonds; pyroxenes: filled red squares;
amphiboles: filled green triangles; chain silicates: open triangles; micas:
open diamonds; filled orange circles: other sheet silicates; open red
squares: framework silicates; blue pluses: oxides; green dashes:
hydroxides; purple open circles: carbonates. The fitted linear
correlation has the formula Cp° (298) = 1.089 (±0.012) S298°; R

2 =
0.955 (with an almost identical fit without the constraint of zero
intercept). The broken diagonal line represents equality of heat
capacity and entropy.
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atures of these materials are close to τ ≅ 0.5, or ΘD ≅ 600 K
since the data plotted refer to a temperature of about 300 K.
Most of the mineral groups are scattered along the correlation
line, perhaps reflecting the presence of the rather rigid silicate
tetrahedra. On the other hand, the amphiboles (filled green
triangles) have rather constant heat capacities, tending toward a
limiting value, reflecting the similarity in their basic structure,
which consists of double chains of SiO4 tetrahedra linked at the
vertices, but with a broad range of Debye temperatures. On the
scale of Figure 4, the deviations (near the origin) noted in
Figure 3 for the simple (binary, ternary) ionic solids do not
show.
A heuristic explanation for this approximate equality of

ambient heat capacity and entropy values again follows from
Lambert and Leff’s13 assumption of a linear increase of heat
capacity with temperature:
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Thus, the assumed linearity ensures cancellation of the variation
when the ratio of the quantities is taken. This observation
should by no means be considered a proof of such a relation
between heat capacity and entropy, but simply indicative. The
near equality of heat capacity and entropy values may have
been remarked upon before but does not seem to have received
any explanation.
Materials whose data are to the right of the equivalence line

have greater entropy than heat capacity and so lie closer to the
Dulong−Petit heat-capacity value (the high temperature limit),
having a correspondingly lower Debye temperature, while
materials whose data are to the left of the equivalence line have
higher Debye temperatures. From the position of most data
points for simple ionic solids to the right of the line in Figure 3,
we can conclude that most such materials have low Debye
temperatures.
Debye temperatures can now be readily assessed using only

ambient values of heat capacity and entropy. For example, using
CsI as an example, Cp/Sp (at 300 K) = 52.5/122.5 = 0.43; using
the Debye equation (and Supporting Information Table S3 is
provided for ease of reference9), this corresponds to a
normalized temperature τ ≡ T/ΘD ≅ 300/ΘD ≅ 2.6. Thus,
ΘD ≅ 113 K. This low Debye temperature implies that the
lattice vibrations of this soft material are substantially excited at
room temperature. For MgO, Cp/Sp (at 300 K) = 37.2/26.9 =
1.38, τ = 0.385, and ΘD ≅ 774 K. By contrast, this rather high
Debye temperature corresponds to incomplete excitation of the
lattice vibrations of this harder material near room temperature.
The Debye temperatures evaluated in this way correspond well
with the (sometimes variable) literature values,17 which require
quite elaborate theoretical or experimental procedures for their
determination.18

■ CONCLUSION

We have here examined the relation between ambient heat
capacity and entropy for a large range of ionic solids. Most
simple ionic solids have entropies which are larger than their
heat capacities, corresponding to low Debye temperatures.

Conversely, more complex ionic solids, such as minerals, have
heat capacities only about 9% larger than their entropies,
yielding Debye temperatures close to 600 K for these materials.
Debye temperatures may be estimated using only available
values of Cp/Sp at a given temperature, and Supporting
Information Table S3 facilitates this estimation.
Similarly, the linear correlation in Figure 4, Cp° (298) =

1.089 S298°, permits rough estimation of either one of these
thermodynamic properties from the other, for silicate and
aluminate minerals.
These results follow from the fact that heat capacity and

entropy for ionic solids are both properties dependent largely
upon the phonon contribution to the energy of the material
and are, in turn, directly related through the Debye equation.
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